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A surprising result is that any object, no matter how irregular, always has 3 perpendicular 
principal axes (for a given choice of origin), for which the angular momentum vector and 
angular velocity are parallel.  In other words, for any object we can find three perpendicular 
axes around which the object will rotate without “wobbling”.  The formal statement is this: 
For any rigid body and any choice of origin O there are three mutually perpendicular 
principal axes through O.  This amounts to finding three perpendicular axes through O for 
which the calculation of the inertia tensor using these coordinate axes yields a diagonal 
matrix.  This result arises from the linear algebraic properties of any real symmetric matrix 
(namely 𝐼)̿ – it can always be diagonalized and the eigenvalues are real. 

How to find the principal axes of an arbitrary object?  We are looking for three directions 
for the angular velocity vector 𝜔��⃗  to create an angular momentum vector that satisfies 𝐿�⃗ =
𝜆𝜔��⃗ , where 𝜆 is some real scalar number.  This is the condition for two vectors to be parallel.  
Since in addition we know that in general 𝐿�⃗ = 𝐼�̿���⃗ , we can combine these two equations to 
find: 𝐼�̿���⃗ = 𝜆𝜔��⃗ , which is a classic eigenvalue problem.  This equation states that a matrix 
multiplying a vector produces the same vector multiplied by a real number, the eigenvalue.  
The eigenvectors of this equation constitute the angular velocity directions that diagonalize 
the intertia tensor, and constitute the principal axes.  These three vectors span the 3-
dimensional coordinate space and are therefore mutually perpendicular.   

We write 𝜆𝜔��⃗ = 𝜆1�𝜔��⃗ , where 1� is the 3x3 unit matrix, and then construct the eigenvalue 
matrix equation: �𝐼 ̿ − 𝜆1��𝜔��⃗ = 0.  The only way to get non-trivial solutions from this 
equation is to demand that 𝑑𝑑𝑑�𝐼 ̿ − 𝜆1�� = 0.  This yields three eigenvlaues and three eigen-
functions.  We examined the case of the cube rotated on an axis that passes through one 
corner of the cube, for which we calculate the inertia tensor above.  This inertia tensor yields 
a characteristic equation 𝑑𝑑𝑑�𝐼 ̿ − 𝜆1�� = (2𝜇 − 𝜆)(11𝜇 − 𝜆)2 = 0, where 𝜇 = 𝑀𝑎2/12, 
giving 𝜆 = 2𝜇 as an eigenvalue and 𝜆 = 11𝜇 as a double eigenvalue.  The eigenvector 
associated with 𝜆1 = 2𝜇 is 𝜔1� = 1

√3
(1,1,1), which represents the body diagonal of the cube.  

The cube has a principal moment of inertia of 2𝜇 = 𝑀𝑎2/6 for rotation about this axis.  The 
other two eigenvalues yield only the condition 𝜔𝑥 + 𝜔𝑦 + 𝜔𝑧 = 0 on the eigenvectors, which 
simply mean that they have to be perpendicular to 𝜔1� .  We are free to choose any two such 
directions that are mutually perpendicular.  A set of possible choices are 𝜔2� =
1
√6

(2,−1,−1), and 𝜔3� = 1
√2

(0,1,−1), for which the cube has moment of inertia 11𝜇 =
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11𝑀𝑎2/12.  To summarize, the principal axes𝜔1� , 𝜔2� , 𝜔3�  diagonalize the inertia tensor as 

𝐼 ̿ = 𝑀𝑎2

12
�

2 0 0
0 11 0
0 0 11

�. 

We considered the motion of a “top” or gyroscope that was set into motion at angular 
velocity 𝜔 along one of its principal axes and then supported at a single point on its rotation 
axis.  The top is rotating about one of its principal axes, which we will call the 3-axis, with 
direction 𝑑3� .  The top is observed to precess in a cone around the vertical direction �̂�.  We can 
write the angular momentum as 𝐿�⃗ = 𝜆3𝜔𝑑3� , where 𝜆3 is the principal moment for this axis.  
There are two forces acting on the top, the normal force at the point of support, and the 
weight, acting on the center of mass.  We take the origin to be at the point of support so that 
only the weight exerts a torque.  The torque leads to a time rate of change of the angular 

momentum: Γ⃗ = 𝐿�⃗ ̇ .  The torque is Γ⃗ = 𝑅�⃗ × 𝑀�⃗�, which points in a direction perpendicular to 
𝑑3� , and therefore 𝐿�⃗ .  This means that �𝐿�⃗ � remains fixed (hence 𝜔 is constant), but the 

direction of 𝐿�⃗  will change.  We found that 𝑑3�̇ = Ω��⃗ × 𝑑3� , where Ω��⃗ = 𝑅𝑀𝑅
𝜆3𝜔

�̂�, showing that the 

principal axis of the top 𝑑3�  is rotating around the �̂� axis at angular velocity 𝑅𝑀𝑅
𝜆3𝜔

.  This is the 

rate of precession.  From the demonstration we saw that as the gyroscope winds down (𝜔 
decreases), the rate of precession increases, consistent with this result. 

We then considered the description of Newton’s second law from the perspective of an 
observer on the rotating object.  The observer in the “body frame” can identify the principal 
axes of the object and describe the angular momentum using the diagonalized inertia tensor 
as 𝐿�⃗ = (𝜆1𝜔1, 𝜆2𝜔2,𝜆3𝜔3).  An inertial observer in the “space frame” is in position to 
identify correctly the net torque Γ⃗ acting on the angular momentum vector, and to write 

Newton’s second law of motion (in rotational form) as Γ⃗ = �𝑑𝐿
�⃗

𝑑𝑑
�
𝑠𝑠𝑎𝑠𝑠

.  We learned how to 

translate the time derivative of a vector quantity from an inertial frame to a rotating reference 

frame in Lecture 10: �𝑑𝑄
�⃗

𝑑𝑑
�
𝑆𝑠𝑎𝑠𝑠

= �𝑑𝑄
�⃗

𝑑𝑑
�
𝐵𝐵𝑑𝑦

+ Ω��⃗ × 𝑄�⃗ , where 𝑄�⃗  is the vector in question and 

the non-inertial reference frame is rotating with angular velocity Ω��⃗ .  In this case we can write 

the equations of motion as witnessed in the body frame as Γ⃗ = �𝑑𝐿
�⃗

𝑑𝑑
�
𝐵𝐵𝑑𝑦

+ ω��⃗ × 𝐿�⃗  , which 

translates in component form into the Euler equations: 

Γ1 = 𝜆1�̇�1 − 𝜔2𝜔3(𝜆2 − 𝜆3) 

Γ2 = 𝜆2�̇�2 − 𝜔1𝜔3(𝜆3 − 𝜆1) 

Γ3 = 𝜆3�̇�3 − 𝜔1𝜔2(𝜆1 − 𝜆2) 

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/ClassMechanics/Precession/Precession.html
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This set of equations describes how the angular velocity vector evolves as it is acted upon 
by a net external torque.  The hard part of using these equations is taking the torque from the 
space frame and expressing it in component form in the body frame (i.e. Γ1, Γ2, Γ3).  When 
applied to the case of the spinning top discussed above, we note that Γ3 = 0 (the torque acts 
in a direction perpendicular to 𝑑3� ) and  𝜆1 = 𝜆2, hence 𝜆3�̇�3 = 0, so that 𝜔3 is constant.  
Thus the angular velocity vector remains aligned with 3-axis and no other component of ω��⃗  is 
excited. 


